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Silicon microdisks are optical resonators that can exhibit surprising nonlinear behavior. We present a
new analysis of the dynamics of these resonators elucidating the mathematical origin of spontaneous
oscillations and deriving predictions for observed phenomena such as a frequency comb spectrum with
MHz-scale repetition rate. We test predictions through laboratory experiment and numerical simulation.
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A remarkable self-oscillation [1–6] effect has recently
been observed in silicon photonic microresonators [7–9],
where excitation of the device with a continuous-wave
input field can yield a periodically time-varying output
field. Here, we present a new analysis of bifurcations and
oscillations in silicon microresonators predicting the loca-
tion and period of oscillation in parameter space.
Previous work has examined this phenomenon through

direct numerical integration [8] and two-time-scale
approximation [9]. By analyzing the structure of the
coupled equations and the time scales over which different
physical effects occur, we are able to reduce the dimen-
sionality of the system and derive approximate closed-form
expressions for characteristic physical phenomena. As one
example, our analysis predicts that the intracavity field can
exhibit a stable limit cycle manifested by a comb of equally
spaced frequency components.
The physical insight derived from this approach may be

valuable in efforts to make use of these devices as compact,
optically driven oscillators. More generally, improved
understanding of nonlinear phenomena in silicon resona-
tors is important given their wide range of applications in
photonics [10–13].
Physical system and model.—The physical system we

study is a microdisk cavity [Fig. 1(a)] coupled to a single-
mode optical waveguide. The waveguide is driven with a
continuous-wave laser at a specified frequency detuning
with respect to a microdisk optical mode. For simplicity, we
neglect backscattering effects common in these types of
resonators [14], and assume that the forward propagating
mode of the waveguide excites only the clockwise travel-
ing-wave mode of the microdisk [15], which, in turn,
couples back out to the forward propagating mode. Our
analysis neglects the Kerr nonlinearity, which has been the
focus of considerable experimental [16] and theoretical
work [17] in the context of parametric oscillation and
frequency comb generation. It also neglects Raman scatter-
ing, and, instead, focuses on the role of two-photon

absorption (TPA). As summarized in the Supplemental
Material [18] and in Fig. 1(b), a strong enough intracavity
field produces two-photon absorption in the silicon
material, resulting in heating and thermo-optic dispersion,
as well as the generation of free carriers, which cause
additional absorption (free carrier absorption, FCA) and
dispersion. The change in the optical loss rate and laser-
cavity detuning caused by these effects means that the
intracavity field aðtÞ is coupled to the cavity temperature
change ΔTðtÞ and the free carrier population NðtÞ.
The physical effects summarized above are described by

the following set of coupled differential equations [8]:

FIG. 1 (color online). (a) Scanning electron microscope image
of a silicon microdisk resonator. (b) Schematic of the physical
system, in which a continuous-wave input field results in a
periodically oscillating output field. (c)–(f) Steady-state reso-
nance curves for the intracavity field amplitude as a function of
normalized detuning. (c) At low power, the curve is stable and
single valued. (d) As power increases, nonlinear effects grow and
the resonance curve bends over, leading to an unstable middle
branch (dashed red). (e) Further increase in pump power leads to
two simultaneous Hopf bifurcations (blue dots) and the birth of a
stable limit cycle (envelope shown in green). (f) When the limit
cycle grows sufficiently large, it collides with the middle branch
and is destroyed via a homoclinic bifurcation (this collision
occurs in four dimensions and is not visible in this projection).
Pump powers: 0.71, 45, 86, and 120 μW.
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(see the Supplemental Material [18], Sec. S2).
The key parameters that we allow to vary include the

input laser’s detuning frequency δω0 ¼ ω0 − ωin (the sign
is opposite of typical optics convention) and the input
power Pin. We refer the reader to the Supplemental Material
[18], Secs. S2 and S3 for details on the system and the
values of the parameters. For simplicity in the analysis, we
separate Eq. (1a) into real and imaginary parts, then
nondimensionalize to obtain

dU
dτ

¼ −A1U − A2S2UðU2 þ V2Þ − A3ηU þ A4ηV

þ A5xV − A6θV; (2a)

dV
dτ

¼ −A1V − A2S2VðU2 þ V2Þ − A3ηV − A4ηU

− A5xU þ A6θU − A7; (2b)

dη
dτ

¼ −A8ηþ A9S4ðU2 þ V2Þ2; (2c)

dθ
dτ

¼ −A10θ þ A11S2ðU2 þ V2Þ þ A12S4ðU2 þ V2Þ2

þ A13S2ηðU2 þ V2Þ; (2d)

where τ ¼ ðγ0=
ffiffiffiffi
Q

p Þt, U ¼ 1=6Q−1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0=Pin

p
ReðaÞ,

V ¼ 1=6Q−1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0=Pin

p
ImðaÞ, η ¼ ðVeff=QÞN, and θ ¼

cp=ðγ20σSiQÞΔT are dimensionless real variables of order 1,
A1 through A13 are positive real constants (see the
Supplemental Material [18]), and x ¼ δω0=γ0, S ¼
ðβSiω0c−1Q2PinÞ1=2 are the nondimensional corollaries to
control parameters δω0 and Pin.
Regions of oscillation and bistability—Figure 1 shows

the field amplitude jaj vs detuning for various driving

powers. As the power increases, the resonance curve
becomes multivalued—bistability and hysteresis becomes
possible. At a critical pump power, two simultaneous Hopf
bifurcations occur (two pairs of eigenvalues cross the
imaginary axis), destabilizing part of the upper branch
and leading to the birth of a limit cycle between the two
Hopf bifurcations. As the pump power is further increased,
this limit cycle collides with the unstable fixed point
(middle branch), undergoing a homoclinic bifurcation that
destroys its stability within a range of detunings—see
Fig. 1(f).
Time-domain behavior—Figure 2 shows the periodic

behavior of the system with high pump power and a stable
limit cycle. It consists roughly of four stages and can be
interpreted physically as follows: the first stage (red) starts
at minimum temperature and is driven by rapid TPA. A
sharp spike in the field is tempered by linear and nonlinear
optical losses and the blue shift of the disk’s resonant
frequency due to a denser free carrier population. The free
carrier population stabilizes when free carrier recombina-
tion (γfc) balances with free carrier generation via TPA.
Thermal decay (γTh) happens more slowly, so the cavity
temperature does not equilibrate during the spike. The
second stage (green) is driven by an increasing temperature
redshifting the disk’s resonant frequency and consists of
steady increases in all variables. A critical temperature is
reached (blue), and both the field and free carrier pop-
ulation collapse in conjunction with a sudden drop in TPA.
The fourth stage (gray) takes up most of the limit cycle and
consists of low activity in the disk while the temperature
decreases smoothly.
Figure 3 shows bifurcations that occur in the parameter

space of δω0=γ0 and Pin. The limit cycle is “born” in
parameter space on the boundary defined by the Hopf
condition (red line) with nonzero period T. At powers
above a threshold (black asterisk), the limit cycle transi-
tions from supercritical (born with zero amplitude) to

FIG. 2 (color online). Limit cycle oscillation. The panels show
(a) field amplitude jaj, (b) free carrier population N, and
(c) temperature change ΔT vs time. The colors indicate different
stages of the limit cycle. The pump power is 1 mW (S ¼ 56), and
the pump detuning is 0.84 nm above resonance (δω0=γ0 ¼ 168).
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subcritical (born with finite amplitude). In the low power
limit, we use a local asymptotic expansion about the Hopf
condition to accurately approximate the limit cycle (see the
Supplemental Material [18]). At higher power, we use a
multiple-time-scale analysis to ultimately reduce the limit
cycle to a one-dimensional relaxation oscillation and
predict the Hopf and homoclinic bifurcations [19].
Multiple time scales.—In their analysis, Johnson et al. [8]

suggested that the observed limit cycle can be separated into
fast and slow time scales. Soltani et al. [9] carried out a two-
time-scale approximation by assuming that changes in the
temperature aremuch slower than changes inother variables;
these time scales are apparent in Fig. 2. Here we extend that
idea to a convenient approximation in terms of three well-
separated time scales. Specifically, the equations governing
the field (2a) and (2b), the free carriers (2c), and the temper-
ature (2d) each appear to operate on a different time scale.
Our approach is based upon an order of magnitude

comparison between the model’s coefficients (see the
Supplemental Material [18]). The ratio of the coefficients
in Eqs. (2a) and (2b) to A1 is at least of order 1, while the
ratio of the coefficients in Eqs. (2c) and (2d) to A1 is much
less than 1 [20], as long as A3 ≫ A8, which implies that
σSicQ ≫ VeffnSiγfc (a less restrictive but necessary relation
is A1 ≫ A8 or γ0 ≫ γfc). When these relations hold,
Eqs. (2a) and (2b), Eq. (2c), and Eq. (2d) evolve on time
scales τ1 ¼ γ0t, τ2 ¼ γfct, and τ3 ¼ γTht, respectively, with
τ1 ≫ τ2 and τ1 ≫ τ3.
Taking the free carrier population η and the temperature

change θ to be constant, the solution to Eqs. (2a) and (2b)
approach fixed points U⋆ ¼ c2A7=ðc21 þ c22Þ, V⋆ ¼
c1A7=ðc21 þ c22Þ exponentially fast, where c1 ¼ A1 þ A3η
and c2 ¼ −A5xþ A6θ − A4η. A numerical simulation veri-
fies that the values of U and V are well approximated by
these fixed points during the limit cycle. We conclude that

the apparent fast dynamics observed in Fig. 2 are slaved to
the dynamics of the free carrier population.
Thus, assuming field variables U and V reach equilib-

rium nearly instantaneously in response to changes in η and
θ, system (2) reduces to

dη
dτ

¼ −A8ηþ
A9A4

7S
4

½ð−A5xþ A6θ − A4ηÞ2 þ ðA1 þ A3ηÞ2�2
;

(3a)

dθ
dτ

¼ −A10θ þ
ðA11A2

7 þ A13A2
7ηÞS2

ð−A5xþ A6θ − A4ηÞ2 þ ðA1 þ A3ηÞ2

þ A12A4
7S

4

½ð−A5xþ A6θ − A4ηÞ2 þ ðA1 þ A3ηÞ2�2
. (3b)

As expected, this 2D system behaves nearly identically to
the 4D system when the above assumptions are satisfied.
Figure 4 shows the limit cycle in the phase plane of η and θ
along with the nullcline dη=dτ ¼ 0 (dashed).
Note that in Fig. 4 the value of η is nearly always either

on the nullcline or changing rapidly with respect to θ. That
is, dη=dτ ≫ dθ=dτ when not on a nullcline. This obser-
vation allows us to simplify the system further through a
second separation of time scales: we will assume that η is
nearly always at a fixed point. This is valid when A10 ≪ A8

and A10 ≪ A9S4, with the former relation implying that
γfc ≫ γTh. For a disk resting on a pedestal of SiO2,
γTh ≈ 0.2 MHz, while γfc is typically Oð100 MHzÞ [8],
so the assumption should be valid in our experiments. As
long as these conditions and the fast field conditions hold,
Eqs. (2a) and (2b), Eq. (2c), and Eq. (2d) evolve on time
scales τ1 ¼ γ0t, τ2 ¼ γfct, and τ3 ¼ γTht, respectively, with
τ1 ≫ τ2 ≫ τ3 (γ0 ≫ γfc ≫ γTh).
Setting Eq. (3a) equal to zero gives the following

parametrization in terms of η:

θ ¼ A5xþ A4η
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�
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and plugging Eq. (4) into Eq. (3b) gives θ
:
¼ dθ=dτ in

terms of η,

θ
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¼ −
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Figure 4 illustrates this 1D reduction of the 2D limit cycle.
The limit cycle occurs in the region of the graph that is

FIG. 3 (color online). Phase space diagram of the system in a
parameter space of power (Pin) and detuning (δω0=γ0). Region I
(gray): monostable (one stable equilibrium). Region II (blue):
bistable (two stable, one unstable equilibria). Region III (pink):
stable oscillations (one stable, two unstable equilibria). Region
IV (green): monostable (one stable, two unstable equilibria). Blue
boundary: saddle-node bifurcation. Red boundary: Hopf bifur-
cation. Dashed green boundary: homoclinic bifurcation. Black
asterisk indicates the point where the Hopf bifurcation goes from
subcritical to supercritical. Power ranges from 0 to 1 mW and
detuning ranges from 0 to 1.5 nm above resonance.
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multivalued. The boundaries of the region (maximum and
minimum values of θ) mark transition points between the
two solution curves.
Estimating the period of the limit cycle.—The 1D

reduction assumes that the transition between “jump”
and “collection” points is instantaneous, separating the
limit cycle into four sections: two fast (red and blue
sections of Figs. 2 and 4) and two slow (gray and green
sections of Figs. 2 and 4). Integrating 1=θ

:
ðηÞðdθ=dηÞ with

respect to η along the nullcline from the collection points to
the jump points gives the period of the 1D limit cycle.
Using approximations to the phase plane branches, we
found

T ≈ 2
θ�1−θ�3

ðθ
: �
2−θ

: �
3Þ2

�
θ
: �
3 ln

�
θ
: �
3

θ
: �
2

�
þðθ

: �
2−θ

: �
3Þ
�
þθ�1−θ�3
θ
: �
1−θ

: �
4

ln

�
θ
: �
1

θ
: �
4

�
;

(6)

where the starred variables indicate the known jump and
collection points (the subscripts refer to the numbered
critical points in Fig. 4).
Limits of oscillation.—The 1D reduction yields intuitive

and simple expressions for the limits of oscillation with
respect to detuning. Equations (4) and (5) imply that
changes in detuning simply translate the limit cycle.
With increasing detuning, the onset of oscillations occurs
when the bottom left “elbow” Fig. 4 (open circle) crosses
the θ axis (θ

: �
3 ¼ 0). The collapse of oscillations through

homoclinic bifurcation occurs when the limit cycle collides
with the nearby unstable fixed point (θ

: �
4 ¼ 0). The period of

the limit cycle diverges near this instability. By using
Eqs. (4) and (5) we can express the bounds of oscillation in
terms of all free parameters.
Figure 5 compares the predictions of the 4D model

[Eq. (2)], the 2D model [Eq. (3)], and the 1D model
[Eqs. (4) and (5) and Eq. (6)] to laboratory data (see the
Supplemental Material [18]), indicating that they capture
the dependence of the period of oscillation on detuning.
The 1D reduction overestimates the detuning at which the
homoclinic bifurcation occurs due to failure to capture the
“overshoot” near instantaneous jumps between branches.
The dependency of the period on other system param-

eters is generally similar to Fig. 5. Increasing the strength of
nonlinear terms usually increases the period of oscillation.
In general, changes in the period are more severe at the
bounds of the limit cycle in parameter space (red and
dashed green curves in Fig. 3, see the Supplemental
Material [18], Sec. S6, for a numerical survey).
Frequency comb.—The self-sustained oscillations of the

field inside the cavity produce a frequency comb with
spacing on the order of 1 MHz [8] (see the data presented in
the Supplemental Material). This spacing corresponds to
the frequency of the limit cycle, and multiple lines appear
since multiple Fourier modes are necessary to represent its
nonsinusoidal shape. The amplitude of the successive peaks
in the comb can be deduced from the structure of the time-
domain oscillation. The spike and subsequent abrupt slope
change visible in Fig. 2 are primarily responsible for
generating the higher harmonics in the comb and suggest
the use of a modified pulse wave for approximate theo-
retical prediction of the comb envelope. We find that the
frequency comb’s higher harmonics decay according to a
power law with n−x where n is the index of the harmonic
and x ≈ 2. The power spectrum of a sawtooth pulse wave
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FIG. 4 (color online). Limit cycle for 2D and 1D reduction
in the space of nondimensional free carrier population
η and temperature change θ [Eq. (3) and Eqs. (4) and (5),
respectively]. Top panel: stable periodic solution to 2D
model (solid), nullcline dη=dτ ¼ 0 (dashed), unstable fixed
points (filled diamonds), and points of interest in the 1D
reduction (filled and open circles). Lower panel: same labeling
scheme, solid lines represent branches of nullcline
corresponding to the 1D limit cycle, arrows indicate instanta-
neous jumps. Input power is 1 mW (S ¼ 56) and pump detuning
is 0.84 nm above resonance (x ¼ 168). The color coding
indicates the portion of the cycle with the same scheme as Fig. 2.
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FIG. 5 (color online). The existence and period of the limit
cycle. Comparison of 4D (blue), 2D (red), and 1D (green) models
from Eqs. (2)–(6) to experiment (black points; the vertical error
bars stem from Lorentzian fits to determine frequency peak
locations and represent 1 standard deviation in the comb spacing)
for Pin ¼ 400 μW, λ0 ¼ 1609 nm, Q ¼ 6 × 105, Veff ¼
60ðλ0=nSiÞ3 (fit), γlin=γ0 ¼ 0.53 (fit), γTh ¼ 1.4 × 105 Hz (fit),
and γe=γ0 ¼ 0.08. The solid line is the numerical solution, and
the dashed line is the analytical approximation.
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oscillates about the decay rate of n−2 with an oscillatory
period (in spikes) of T=w, where T is the fundamental
period, and w is the pulse width. Figure 6 shows the fit of
both the data and the 4D numerics to the frequency comb of
a sawtooth pulse wave.
Discussion of results.—We have presented a new

approach to modeling the multiscale oscillatory behavior
brought on by nonlinear absorption and dispersion in
silicon microdisks. Perturbation theory allows us to reduce
dimensionality and gain insight into the underlying dynam-
ics of this nonlinear system, even producing analytic
predictions for key properties of the system and key
transitions and behavior. The heart of the analysis lies in
the separation of time scales between optical, electro-
optical, and thermal effects which are characteristic of
multiple optoelectronic devices, including the silicon
microdisks considered in our work.
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